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We extend some results of Christol and Furstenberg to the case of several 
variables: (1) A power series in several variables over the p-adic integers Z,, is con- 
gruent mod p” to an algebraic power series if and only if its coefficients satisfy cer- 
tain congruences mod p”. (2) Any algebraic power series in m variables over a field 
K can be written as the diagonal of a rational power series in 2m variables. We also 
give an elementary proof of a result of Deligne: The diagonal of an algebraic power 
series in several variables, over a field of nonzero characteristic is algebraic. 
Moreover we show that the diagonal of an algebraic power series over L, is 
algebraic mod p’, for every s. We also obtain other related results. ‘cl 1987 Academic 

Press. Inc. 

1. INTRODUCTION 

We prove several results about algebraic power series and diagonals of 
algebraic power series. If R is an integral domain, then R[ [x]] denotes the 
ring of formal power series in the variables x = (x, ,..., x,) over R. We call a 
power series y(x) E R[ [x]] algebraic if it is algebraic over R[x]. Section 2 
contains a lemma that we use repeatedly in the rest of the paper. In 
Section 3 we prove the following (Theorem 3.1): 

If y(x) =Ca,,x” is an algebraic power series (x = (x, ,..., x,), 
v = (v, ,..., u,)) with the a,, E L,, the p-adic integers, then for any s > 0 there 
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is an e E N such that for each i = (ii ,..., i,), with 0 6 ij < p’, there is an e’ < e 
and an i’ = (i’, ,... , iL), with 0 d ii < p”, such that for all v 

apsv + i = ape,” + i’ mod p”. 

(Here p’v + i = (p’\j, + i, ,..., P’V, + i,).) Conversely if the a,, E Z, satisfy 
such a set of congruences then there is an algebraic power series 
r =C &,?c~E Z,[[x]] with &-a, modulo p’. The case s= 1 of this 
theorem is contained in Christol, Kamae, Mendes-France, and Rauzy 
[C-K], and the case m = 1 is proved in Christ01 [Chl] by somewhat dif- 
ferent methods (see Remark 4.6). Recently Christ01 [ChZ] has extended 
the case m = 1 to nondiscrete valuation rings. In [C-K] the theorem is 
proved that if F is a finite field then I = C a,,~: E F[ [xl]] is algebraic if 
and only if the function n b a, can be computed by a finite machine. The 
generalization of this theorem to power series modulo ps is immediate from 
Theorem 3.1 by using the method of [C-K]. For the sake of completeness 
we provide details in Section 4. If J(X) = C a,, ,,x;l..’ x2 then the 
diagonal I,, J-v) is defined by Z,,,,(y) = C a y,y,y). ._ ,,,x’;lxy . . . x2. We define 
the other diagonals I,, similarly. By a diagonal we mean any composition 
of these diagonals. In Furstenberg [Fu] it is shown that (a) if y(x) is a 
rational function E F[ [xl], where F is a field of characteristic p # 0, then 
any diagonal of y is an algebraic function and (b) if v(xl) is an algebraic 
function in K[[x~]] (K any field) then there is a rational function 
R(x,, .x?)E K[[xl, x2]] such that y(xi)= Z,,.,(R). In Deligne [Dl] it is 
shown that (c) if F is a field of characteristic p #O and ~(x,,..., x,) E 
F[ [x, ,..., x,]] is algebraic then any diagonal of y is also algebraic, and (d) 
if J E Z[ [x, ,..., x,]] is algebraic then for almost all p, and for all s, the 
diagonal of JJ modulo p’ is algebraic. In Section 5 we reprove (c) and also 
show that if R is a complete discrete valuation ring with uniformizing 
parameter rt and residue class field of characteristic p ~0, and if 
J'E R[[x , ,..., x,,]] is algebraic, then for any diagonal I(,,) and any s E N 
there is an algebraic power series Jo R[ [x, ,..., x,,]] such that Z(y) 5 j 
modulo x’. In Section 6 we extend (b) to the case of algebraic power series 
in several variables over a local Noetherian integral domain A which is not 
pathological: If y(x, ,..., x,) E A [ [xi ,..., x,]] is algebraic, then there is a 
rational power series R of 2m variables so that y is a diagonal of R. We 
also give an application of this theorem (Remark 6.6). In Section 7 we 
show that power series C u,,x;~Z~[[xi]] with the a, defined by a recur- 
sion of the form a,, = F(n) a,_, , where F(n) is a rational function over Q 
all of whose zeros and poles belong to Q, are algebraic modulo ps for all s. 

We would like to thank B. Dwork for stimulating conversations, 
G. Christol for sending us valuable information and L. Van Hamme for 
bringing reference [C-K] to our attention. 
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2. A USEFUL LEMMA 

First we introduce some notation. F is a perfect field of characteristic 
p#O; x=(x ,,...,. Y ) and F[[x]] is the ring of formal power series in nt 
x ,,...,. xrrn over F. Let S= jcl=(c((l) ,,.., a(m)): O<~((i)<p for i= l,..., m). 
We shall denote elements of S by the letters CI, /I. or y, sometimes with sub- 
scripts. Note that for any y E F[ [IX]] there exist unique y,(x) E F[ [x]] for 
cc ES such that Y(X) = Cats x”y;(x). (Here .x? = x:“‘... .I$“‘),) We can 
iterate this so that y(x) =~z,aEs.~a+pDy$r(~) and so on, where 
PB = (Pm 1 L Pbw)). If Y(X) = c,, a Al’ I’- where v = (v, ,..., v,,) is a multi- 
index then y,(x) = C, a$‘+‘;..~‘, where pv + r* = (pv, + a( 1) ,..., PV,,, + a(m )). 
Y&) = cc +A 1 + p/j X” and so on. If F is the p element field then we have 
Y,(X) = CL, up,, +a- Y” and so on. Suppose now that y(x) E F[ [x]] is algebraic 
(i.e., is algebraic over F[x]). Then y(x) satisfies an equation of the form 
x;=, g,(x)yp’= 0 with the g,(x) E F[x] and g,(x) #O. (Because F(x)(y) is a 
finite dimensional vector space over F(x).) We claim that we can always 
take r = 0. Indeed, suppose r > 0: Since F is perfect we can write g;(.u) = 
C, E s gy%(.x) XI. Hence we have C, t s C;= r (gr, .r”‘) x1 = 0 which is equivalent 
to the pm equations z.;=,g, y”‘-’ = 0. For at least one (Y we have that 
g,, #O and hence ,V satisfies an equation of the above form with r replaced 
by Y - 1. Hence we have that if y(x) is algebraic then it satisfies an equation 
of the form 

f(x) y = c j;(x) j’” = L(vP ,...? .F) (1) 
,=I 

where f(x) # 0 and L is linear over F[x]. In the rest of the paper we shall 
make repeated use of the following Lemma. Part (ii) in the case m = 1, 
occurs in [C-K]. 

2.1. LEMMA. (i) Let J(s)EF[[x]] be algebraic. Then ,for e large 
enough u,e huve thutfor every ( CZ, ,..., a,,) E s’ there is an F linear comhinatiotl 
M,, J . . . . y,,, ,j,, ,... ) qj” the J’,!, ps, with e’ < e sz~h that 

yz ,... .,.=M, /... .,(...,I’/r, ,<,,...I. 

(ii) !f, in addition, F is a finite jield then we have that .fbr e large 
enough and each (CI, ,..., c(,,) E S” there is an e’ < e and (p, ,..., ,tl<,,) E S”’ SUC’II 
that 

Yx,‘-.z~=Yp, p,2 . 

Proof. y satisfies an equation of the form (1) above. Letting 
Y’C a6 s J$X” and substituting into ( 1) we get 

c f(x) y$x” = L( 4’p ,...) ,I@). (2) 
ras 
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Multiply (2) by fD-’ and express fpU ‘(x) L in the p-basis {x”> to get 

~~sfP(X)Y, pxa= f"-'(x) L(yP )...) yq= c L{(y )...) yqxa. (3) 
X6.7 

Hence we have the pm equations 

f(.X)Y, = LAY,..., Y"'7. (4) 

Suppose now that deg,( f ) = N and deg,(L) = K where “deg,” means the 
total degree in x. Then 

deg,(f p-'b) L(yp,..., yps)) = K+ (p- 1) N 

and 

deg,(L,) G 
K+(p-I)N 

P . 

Multiply (4) by f p- ‘(x) and substitute from (1) for f(x) y to get 

f”(-u)y,=fp-2(X)L,(f(x)y,f(-~)?tp,...) 

=f”-‘(x) L,(L(yP )...) yq f(x)yP )... ). (5) 

Set ya = Co Y!&$, where /J’ = (/3, ,..., /3,) with 0 6 pi < p, substitute into (5) 
and write the new equation in the p-basis (x0} to get 

; (fwy:,J.~“=~ (L,,(y ‘...,. Y~~+‘)fpX~. (6) 
B 

Equating the coefficients of xp and taking pth roots we have 

f(x) J’up = -L,(YY..? Yp’-‘h (7) 

The deg., of the right-hand side of (5) is f (A/p) + A where 
A = (p - 1) N + K, so deg,(LaB) < (A/p’) + (A/p). Iterating this procedure 
we get that 

fb)Y,p,... = kg. ,... (Y ,... 5 Y”‘-‘1, (8) 

where deg,(L,8r...) d (A/p) + (A/p2) -t (A/p3) + ... = A/(p - 1). Note that 
L,,;.... is linear in y, yP ,..., JF’, with degree in x bounded by A/(p - 1). 
These polynomials lie in a finite dimensional vector space over F. Hence for 
e large enough we have that 



50 DENFF AND LIPSHIT7. 

where M,, a, is an F linear combination of the y,,) .,], , for P’ < r. In the 
case that F is a finite field the set of all possible L./,:. (J’. Jam...., .I”“-‘) is 
finite and so (ii) follows. Q.E.D. 

2.2. Remark. Note that if e’ < r then each y,{, ,/{, is an F[s] linear 
combination of the y$ I.“. !,,,, and that the coefficient of y$ .‘.,{, is a 
polynomial in x of degree less than p’ “. Hence it follows that for L large 
enough the y,, . ..?~. satisfy a system of equations of the form 

i.e., each yor, ...or, is an F[x] linear combination of the y;, ...sI, p$t ..,j, ,..., 
ypd; PC, and the coefficient of y$‘, 8, is of degree less than pi. The Jacobian 
of this system of equations (in the unknowns y,, . . . ...) is 1. Hence the yz,. 
are all algebraic. (see, e.g., [La, p. 2681). Further it follows that if R is t 
complete discrete valuation ring with prime p such that R/p = F then there 
are -?,, .a‘,(x) E R[ [xl], all algebraic, such that pl,. 1,, = yX, Ic, modulo p. 
This is merely a variant of Hensel’s Lemma. For the sake of completeness 
we include a proof. We must show that if we have a system of equations 

.fjfi( Y, ,...’ Yk) = 0, i= 1 ,,..) k 

with the .f;~ R[[x]][ Y, ,..., Y,] and a??=(vl,...,~/,)ER[[x]Ik such that 

ji(j)=O modpR[[-y]] 

and 

det $ (j)rl modpR[[x]] 
0 

then there is a j E R[ [xl]” satisfying h(j) = 0 and yj = y, mod pR[ [x]] 
for i= I,..., k. It is sufficient to show that there exist Z,E R[[x]]” such that 
if y = j + C:=, piyi then f,(y) = 0 mod pn+ ‘. Suppose that F,,..., 5, have 
been shown to exist. Let 7 = j + C;= , p’E, and let ~1 =F + p”+ ‘z. Then, 
writing .f for (f, ,...,fk), we have by Taylor’s Theorem that f(y) = 
f(j+p”+’ ;)=f(Y)+(af/ay)(y)p”+‘=+p’“+‘H(=) where wm) = 
(af,/lay,),.j= ,.,...+ and H(z) has entries from R[[x]] [z]. Now j”(j) = p” + ‘L 
for some vector L with entries from R[ [xl]. Hence we must see that z can 
be chosen so that p”+‘L+ ~~“(aflC~y)(j) z=O mod P~+~, i.e., that there is 
a z such that L + (af/ay)(j) z s 0 mod p. Since det(afla+v)(j) = 1 mod p 
there is a matrix A with entries from R[[x]] such that A(aflay)(F) = I, the 
identity matrix, and hence we can choose Z,,, , = -AL. 
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3. ALGEBRAIC POWER SERIES mod p* 

The main result of this section is 

3.1. THEOREM. (if Let f(x)=Cy a,x”~Z~[[x]], x=(x1 ,..., x,), be 
algebraic. Let s E N,. Then there exists an e E N,, such that for all j < p’, 
there exist e’ < e and j’ < p” such that 

apCv + i E ap6V + j mod p’, (1) 

for all v. Here v, j, j’ are multi-indices EN”‘, and e, e’ E N. By 
.i=(j , ,..., j,) < pE we mean j, <p’,..., j, <pe, etc. 

(ii) The converse is also true: Let f(x) = C, a,x” E Zp[ [xl], and let 
s E t+l,,. Suppose that there exists an e E N, such that for all j < pp, there exist 
e’ <e and j’ <p” satisfying (1). Then there exists an algebraic g(x) E 
Zp[ [xl] such that f(x) = g(x) modp”. 

Remark. The case s = 1 is contained in [C-K]. The case m = 1 is 
proved in [Chl] and [Ch2]. To prove 3.1(i) we shall first prove 3.l(ii). 
First we introduce some more notation. 

3.2. Notation. Let K be any field and f(x)~ K[ [xl]. Let a ,,..., c(,ES, 
with S as in Section 2. We define f=, . . ...(x) E K[ [x]] by 

If K is the p element field FpF,, then fz,, . . ...(x) =,f,, _.. zI, where f,, ...ly is as 
defined in Section 2. 

Note that the vth coefficient of TX, ._. ..(x) is equal to the 

(p’v+a,+a2p+ ... +a,p’-‘)th (1) 

coefftcient of f(x). 

Proof of Theorem 3.l(ii). From 3.1(l) and 3.2(l) it follows that for all 
a1 ,..., a, E S there exist e’ <e and a’, ,..., a:, ES such that 

L,-...,(x) =A; -.;.(.d mod p’, 

and hence 

fm,. Jx) s L( . . . . fo, ,J.Y~~-~‘) ,...) mod p’, (1) 

where L is a linear polynomial without constant term (depending on 
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CC, ,..., tl,,) over Z[s], and where the 8, ,.... p,~ run over all elements of 5’. If 
s = I, then (1) is equivalent to 

.f,, J-x) = U..., (.f,, .--,j,,(-~)) P” ’ . . ..I mod p. (2) 

Since the Jacobian of the system (2) is congruent to 1 modp, it follows that 
the fX,. I<,’ (and hence also .f ), are algebraic mod p, and can be lifted to an 
algebraic power series over Z,, (see Remark 2.2). We will prove by induc- 
tion on s that the TO,. zc (and hence also S), are the reductions mod p’ of 
algebraic power series g “I” ““(x) E Z,[ [x]]. Let s> 1. By the induction 
hypothesis there exist algebraic power series 1~‘“’ “~‘(x)EZ,,[[.Y]] such 
that 

Set 

fz,, ..?,,(s)=h’““..““(X)+p’~‘d(“‘.. “<j(x). 

From (1) it follows that 

d’““““qx) E I#(..., A ‘“‘..‘“‘,‘(xP”~“),...) + p”‘“qx) 

and hence 

mod P, 

d(z”“z~)(x)~ L(..., (A(“1 ‘p~)(x))p” “,...) + R’“l”~‘*~)(x) modp, (3) 

where 

p’.“%)(_Y)=p ,“‘[ -/+“I ..%)(s)+L( . . . . /!p ./le.)(~yyP” I”) ,.., )]. 

Note that R’*‘...“~)(~)E~~[[x]] is algebraic. The system (3), in the 
unknowns A’“’ “’ ““(x), has Jacobian congruent to 1 mod p. Thus Hensel’s 
Lemma implies that there exist algebraic power series a”l” “e’(~)~ 
Z,[[x]] such that 

The Theorem 3.l(ii) now follows from 

fm ,... a,(~) = i~‘“l~““~‘(x) +ps ‘atal ..“c,‘(x) mod@. Q.E.D. 

Next we turn to the proof of 3.1 (i), but first we need some notation and 
some lemmas. 
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3.3. Notation. If a E Z, then ti E Fp denotes the residue class of a mod p. 
Let 8 be the map F, + Z,: 7~ i for i= 0, l,..., p - 1. This map induces 
(coefficientwise) a map 8: Fp[ [xl] -+ Z,[ [xl]. Let C” a”x” E Z,[[x]]. 
The ith p-adic digit of a” will be denoted by a,,(i). Thus a”(i) E 
(0, l,..., p - 1 } and a” = C,“=O a,,(i) p’. 

3.4. LEMMA. Let f(x)~ F,[[x]] be algebraic. Let SE N,. Then there 
exists an algebraic power series g(x) E Z,[ [xl] such that 

0( f(x)) = g(x) modp”. 

Proof. Let f(x) = C,, c,,x”, with c” E F,. From Lemma 2.l(ii) it follows 
(see 3.2( 1)) that there exists an e E N, such that for every j< pe there exist 
an e’ < e and j’ < pe’ such that 

for all v E FV”. But this also implies that 

The lemma follows now by applying 3.l(ii) to C, 0(c,) x”. Q.E.D. 

Remark. In general @(f(x)) is not algebraic. For example, 
f(x) = C xP” E FJ [x]] is algebraic but 0( f(x)) is not algebraic since every 
algebraic function satisfies a homogeneous, linear differential equation, and 
hence, if it is not a polynomial, there is a bound on 
successive Taylor coefficients which can be all zero. 

3.5. PROPOSITION. Let C” a”x” E Z,[ [xl] be algebraic. 
C, a”(i) x” E F,[ [xl] is algebraic. 

the number of 

Let ieN. Then 

Proof: It is clear that C” a”(0) x” = C” if;x” E F,[ [x]] is algebraic, since 
1” a,x” is algebraic. For i > 0, the proof is by induction on i. Note that 

- - 
1 a”(i) XI’ = p -‘h(x), 

where 

_ . . . -pi-‘8 1 a”(i- 1)x” . 
Y > 
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By the induction hypothesis and Lemma 3.4, there exists an algebraic 
power series g(x) E Zp[ [x]] such that 

h(x) = g(x) mod@+ ‘. 

Hence C, a,,(i) xy =p-‘go is algebraic, since p ‘g(x) E Z,,[ [xl] is 
algebraic. Q.E.D. 

Proof of Theorem 3.1(i). It is sufficient to prove that 

Up’,,+,(i)=up~v+j’(i) for i=O, l,..., s- 1. (1) 

From Proposition 3.5 it follows that 

y”) q a,oX”EFJ[X]] 

is algebraic. From Lemma 2.1 it follows that, for each i, the set of all 
y”’ - 1,cz:22, 2 for all possible (r,, ajr x3,... ES is finite. Hence the set of all 
s-tuples 

is finite. Hence there exists an e E N, such that for all c(r ,..., a, E S there exist 
e’ < e and CX’, ,..., cr.:, E S such that 

)A’) - a,&> ‘cz<, = Y 2’. %.,, for i=O, l,..., s- 1. (2) 

Formula (1) now follows from (2) and 3.2( 1). Q.E.D. 

Remark. The results which we have proved for Fp and E, remain true, 
with essentially the same proofs, for any finite field F, (q=p”) and any 
complete discrete valuation ring R, of characteristic zero, with prime p and 
W~P)=&,. 

4. FINITE MACHINES 

We recall that a finite machine M consists of the following. (i) A finite set 
9’ of (internal) states, one of which is the initial state, (ii) A finite alphabet, 
9, of inputs, (iii) A finite alphabet 0 of outputs, (iv) A transition function 
t: 9’ x .a + Y and an output function o: 9’ -+ 0. The machine, starting in 
the initial state, is fed a sequence i,, i2,..., from 9. At the jth stage it is in 
internal state s, it “reads” input ii, enters the internal state s’= t(s, i,) and 
displays output o(s’). 

We shall also want to consider machines with m inputs i/r, i,T,..., for each 
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j= l,..., m. At each stage it will read one “digit” from each input. We can 
always reduce such a machine to one with only one input by interweaving 
the inputs i,,, i, ,,..., iml, i,2 ,.... For more information about finite machines 
the reader is referred to [Mi]. 

The machines we shall consider will have f = (0, 1,2,..., p - 1 }, so that 
an input i,, iZ,..., can be considered as a natural number cj ijp’- ‘. 8 will 
be the elements of Z/p”. Hence for each input v E N”, in p-adic notation, the 
machine M produces an a, E Z/p”. We shall say that the sequence {a,,} is 
generated by M. 

4.1. THEOREM. The sequence a,, E Zp/pS, v = (vl ,..., v,) E N” is generated 
by a finite machine if and only if there is an algebraic power series y(x) = 
2 6,.x” E Z,[ [xl] such that ii, = a, modp”. 

ProoJ: Suppose that the a, are generated by a finite machine M. 
Choose e so large that for every s E Y if M ever enters state s then it does 
so on an input of length less than e. This means that for each i = (i, ,..., i,) 
with 0 6 i, < p’ there is an e’ < e and an i’ = (ii ,..., ik) with 0 < ii <p” such 
that +,, + , = ape’” + ,, for all v (i.e., M is in the same state after e stages 
starting with input i as it is after e’ stages starting with input i’). The 
existence of -Y(X) now follows immediately from Theorem 3.l(ii). 

Conversely suppose that there is an algebraic power series 
y(x)=C ii,,x”~Z~[[x]] with &=a,, modp”. From Theorem 3.1(i) we 
have that for e large enough and for every i = (i, ,..., i,) with 0 6 i, < p’ for 
j= l,..., m there is an e’ <e and an i’ = (ii ,..., ik) with 0 d ii <p” for 
j = I,..., m such that 

e apev + i = a”,,,, + II mod p’. 

We equip our machine with a table of all the values of the dir modp” for 
i’ = (ii ,..., ih) with 0 d i,’ <p”. We compute as follows. Given v write 
v = ppV + i. Use the above congruence to replace v by v’ = pp’S + i’. Use the 
table to display tic and iterate. Q.E.D. 

Remark. The same result is true if we replace Z, by any complete dis- 
crete valuation ring R of characteristic zero, with prime p such that 
R/(p) = F, for any finite field F. The only changes necessary in the proof are 
notational. 

5. DIAGONALS OF ALGEBRAIC POWER SERIES 

In this section we shall prove two results about the diagonals of 
algebraic power series. Theorem 5.1 gives an elementary proof of a result of 
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Deligne [Dl, p. 1291, and Theorem 5.2 is a strengthening of [Dl, 3.81. We 
apply Theorem 5.2 to give an analogue of Proposition 3.5 for “Teichmiiller 
digits” (Theorem 5.5). 

Throughout this section .Y = (.\- , ,..., x,,?). If F(X) = C u,,, ,,,,.$I .Y;: then 
z\-,.rz(,l’) = 2 a,, “, ,,l., ,,,.K;“x;’ . ” x,::‘. The other diagonals I,,, are defined 
similarly. By a diagonal we mean any composition of the Z,-,Y,. We shall 
also need the nondiagonals .Z,,.,( y) = C,,, > ,,i CI,, ~ ,,,. u;’ . . .u;;:. 

5.1. PROPOSITION. Lef F be u ,f;eld qf charucteristic p # 0, Ief 
x = (9, ,..., I,,,) and let J>(X) E F[ [xl] be algebraic. Let I be any composition 
of’ the Zr,,,‘s and the J .I,- Y,‘s. Then Z(y) is algebraic. 

Proof: We may suppose that F is perfect. It is sufficient to prove the 
proposition for I= I,,., and for J= J,.!,,. We know from the remark follow- 
ing Lemma 2.1 that for e large enough the J’,, ?~, for (2, ,..., u<,) E s’, satisfy 
a system of equations of the form 

?‘,I ‘1.. = L,, ..,,.(....$ ,...,, ~ 1..., r;;. ,j (,1... ), (1) 

where L,,..., is a linear combination over F[x] of the y$, ,r,., 
,J;;li ,j< . . . . . .v”;; fi,,’ and the coefficient of $, ..p, has degree less than p’. 
Hence we have for each CI, . . . ~1, that 

Yz,.. I, =c q/r ,--.I &L$../&~ (2) 

where i> 1 and the degree of q,], ..B,,(~)is <pi. Note that Z(qy$i ...B,) = Z(q) 
KY”,, . . . . r,.) = z(q)(mf,, -8,)) pi, where we have written q instead of qa,. .B,,l. 
Hence applying I to the system (2) we get a system of the form 

op,, ..,,.)=C dqp,.. ,r,.;)(dY,, ,&HP 

with i always 3 1. Since the Jacobian of this system, in the unknowns 
Z(j),, . . . ...) is 1 we have that all the I(?,,, ,.. .,.) are algebraic. Sin; 
y=C?l a, + pz2+ “’ + p+‘a,.,‘p~, _ 2, ..a, we have that Z(?,)=CZ(x”‘+P”?f-” +p” e, 

(4Y~,--.JY’ and hence that Z(y) is algebraic. 
Next let .Z be any one of the J,, and let Z be the corresponding 

Z .Y,‘ci. Note that J(q.y~~...8~)=q(J(yg,...~~))p’+J(q)(l(L’B,...8,))p’, where 
again q denotes q8,...Der(~) which has degree <pi. Hence if we apply J 
to (2), we see by the previous argument, and the fact that the Z(yB,.. #,) 
are algebraic, that all J(Y,,....,J are algebraic. Since 
J(y) = J(cs1!+“12+ +““-‘I’j’~; --.,,) = Cvp+PZ’+ ...+f~‘-‘%,(J(yZ, J)PC + 

C J(.y ‘It+pzzc “. +p”~‘“~)(Z(y,,....~,))““, we see that .Z(-bz) is algebraic. Q.E.D. 

Next let R be a complete discrete valuation ring of characteristic zero, 
with uniformizing parameter rr such that R/(x) = F is a field of charac- 
teristic p # 0. 
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5.2. THEOREM. Let f(x) E: R[[x]] be algebraic and let SE N. Let I be 
any diagonal. Then there exists an algebraic power series g(x) E R[ [x]] such 
that Z( ,f ) = g mod $. 

5.3. LEMMA. Let .f(x) E R[ [x]] be algebraic. Then there exist algebraic 
power series 

g(x, 3 x3,...* xm) e RCCx, > x3,..., x,11, 

0) E: NCxll, 

such that 

f(x) = g(x,x,, x 3r..., xm) + h(x) mod 71 

Proofi I,, ,& f ) = Z.&f ) E F[ [x, , x3 ,..., x,,, ] ] is algebraic, and hence is 
the reduction mod 71 of an algebraic power series g(x,, .x3,..., x,) E 
RC[ x1, x3,..., x,]]. We have I,,,,( f ) = g mod 71. Let J,,,, be as before. 
J.~,.~z(.f)=J.~,.~,(f) =der wO(x) E F[ [Ix]] is algebraic. Note that wO(x) can 
be written as 

Since wO(x) is algebraic, also uO(x) is algebraic. Hence q,(x) is the 
reduction mod 7~ of an algebraic power series u(x)~R[[x]]. Thus U(x) = 
u&x), and J.,,,(f) = w,(x)= x,G(x,, xlx2, -x3,..., x,,,). Hence J,,r2(fl= 
x1 u(x,, x1 x2, x3,..., x,) mod 7~. Analogously there exists an algebraic power 
series U(X)E R[[x]] such that 

Jy2r,(f)=x2~(~~,~2, x2,x3 ,..., x,,,) modz. 

Now take h(x) = def x,u(x,, xl x1, x3 ,..., xm) + x2u(x, x2. x2, x3 ,..., x,). 
QED. 

Proof of Theorem 5.2. It is sufficient to prove the theorem for the 
diagonal operator Z,, .rz. From the previous lemma the existence of 
algebraic power series g, E R[ [x,, x3, x4,..., x,,,]] and hl E R[ [xl] follows 
such that 

f(x) = g,(x,xz, x3,...) + h,(x) mod n and IT, .:(h i I= 0. 

Let fi(x) =d’f(1/~)(f(x)-g(~~,~~2, x,,...) - /Z(X)) E R[ [xl]. Applying the 



58 DENEF AND LIPSHITZ 

lemma to J;(X) and so on, we obtain algebraic power series g,, K?,.... 
g,< E R[ IX,, sj ,..., x,~]] and h,, h, ,..., h,, E R[ [x]] such that 

.f(x) 3 g,(x, x,, l-1 ,... ) + h,(x) + n g,(r, x2, x3 ,...) + nh,(x) 

+ ‘.. + n’( ‘g,,(x, x2, x3 ,...) + n1 ‘hs(x) mod rc’, 

and I,, Jhi) = 0. Hence 

Z,,.Jf(x)) = g, + ng, + ... + n’p’g3 mod x(‘. Q.E.D. 

5.4. COROLLARY. Let f(x) = C a,.~” E R[ [xl] and g(x) = 1 b,x’ E 
R[ [x] ] be algebraic. Let h(x) = x:, a, b,,x” be the Hadamard product off 
and g. Let s E N,. Then there exists an algebraic power series r(x) E R[ [x]] 
such that r(x) z h(x) mod r?. 

Proof: This follows from Theorem 5.2 and 

Ix, J, 1x2 y2 . . . IY& (f(-~)g(.v))=W). Q.E.D. 

Remnrk. Theorem 5.2 in the case that R/(K) is a finite field follows 
immediately from the results of Section 4. The use of the results of Sec- 
tion 4 can be replaced by an application of the diagonal to a system of 
equations of the form (1) in the proof of 3.l(ii) and an argument like the 
proof of Theorem 3.l(ii). 

Next we use Theorem 5.2 to prove an analogue of Proposition 3.5 for 
“Teichmiiller digits.” Let R be a complete discrete valuation ring of charac- 
teristic zero, with uniformizing parameter rt such that R/(n) = F is a perfect 
field of characteristic p # 0. Then there exists a unique homomorphism y of 
the muftiplicatioe group of F into the group of units of R such that y(z) = z 
for all 2 E F, where the overbar denotes reduction mod(n), see, e.g., [Gr, 
p. 711. The element y(z) is called the Teichmiiller representative of z. If 
CE R is such that C= F”, then cpn= V(Z) mod ?+I. Every element a~ R 
can be written in a unique way as 

where each u(i) E R is the Teichmtiller representative of some element in F. 
We call u(i) the ith Teichmiiller digit of a. If f(x) = XV u,x” E F[ [xl], then 
we define y( f(x)) = C, ~(a”) xv E R[[x]], where we take y(0) = 0. With 
these notations we have 

5.5 THEOREM. Let f(x) = xv u,x” E R[ [x]] and let s E N,. Then f(x) is 
congruent mod z,’ to an algebraic power series in R[ [xl] if and onfy IY 
x, a,,(i) x” E F[ [x] ] is algebraic for i = 0, I,..., s - 1. 
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Proof. The theorem follows from Lemma 5.6 below, by using the same 
argument as in Proposition 3.5. Q.E.D. 

5.6. LEMMA. Let f(x) E F[[x]] be algebraic. Let SE N,. Then there 
exists an algebraic power series g(x) E R[ [xl] such that 

y( f(x)) = g(x) mod ?. 

Proof Write f(x) = C, a,.~‘, with a,, E F. Let b,, = afm’“m”. Then C, b,,x’ 
is algebraic, since it equals 

(f(XP”-‘))P-‘“-‘y 

From Remark 2.2 it follows that there exists an algebraic power series 
C, c,x” E R[ [xl] such that TV = 6, = a:m”m”. From Corollary 5.4 it follows 
that there exists an algebraic power series g(x) E R[ [Ix]] such that 

The lemma now follows from the congruence y(a”) = cfY’ mod 7~‘. Q.E.D. 

6. REPRESENTATION OF ALGEBRAIC POWER SERIES AS 
DIAGONALS OF RATIONAL POWER SERIES 

In this section we prove (Theorem 6.2) that any algebraic power series in 
any number of variables over an excellent local integral domain A can be 
written as a diagonal of a power series over A which is rational. The special 
case of algebraic power series in one variable over a field is contained in 
[Fu]. In Remark 6.6. we show how this representation can be used to give 
a short proof of the result in Section 3, following Christol’s approach 
[Chl]. 

Roughly speaking, an excellent ring is a Noetherian commutative ring 
which is not “pathological”. For the definition of excellent ring we refer to 
[Ma, p. 2581. We recall that 

excelle!!. ” 
any field k, and any complete local Noetherian ring are 

(ii) If A is an excellent ring, then any finitely generated A-algebra is 
excellent. 

(iii) Any localization of an excellent ring is excellent. 

(iv) A discrete valuation ring R is excellent if and only if the fraction 
field of its completion is separable over the fraction field of R. 

(v) An excellent ring is Noetherian. 
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6.1. Notation. Let A be any integral domain. Let s = (s, ,..., z,,,) be as 
usual, and let .r be one variable. Let 

I‘(-u, .v) = 1 a ,,,, 2 . . . . . . . . ,.,.u;’ . s;;;J” E A [[x, y]]. 
I,. .I,,. , 

We use the following notation 

6.2. THEOREM. Let A be any excellent local integral domain, and let 
x = (x, ,..., x,,) as usual. Let ,f(x) E A [[xl] he an algebraic power series. 
Then we have: 

(i) There exists a power series R(x, y)~ A[[x, y]], with y one 
variable, that represents a rational function of x, y, such that f(x) = 
WR(.u, Y)). 

(ii) There exists a power series S(.u, u) E A[[,~, u]], 11 = (u, ,..., II,,,). 
that represents a rational function qf x and u, such that 

Proof of 6.2(i). Let 9~ be the unique maximal ideal of A, let (x) be the 
prime ideal of A [x] generated by x, , x1,..., x,, and let (P+ x) be the 
maximal ideal of A[x] generated by m and (x). 

We denote the localization of A[x] with respect to the maximal ideal 

(e&n, x) by A Cxl~,,,.,~. We will use the notion of Henselization of a pair (R, I) 
consisting of a ring R and an ideal I of R, see [Ra, p. 124 Definition 43. Let 
the pair (A(x), (x)) be the Henselization of the pair (A[x]~,~,,,, (x)). Thus 
(A(x), (x)) is an Henselian pair although in general A(x) is not an Hen- 
selian ring. We have A{x} c A[[x]]. Since A is excellent, the fibers of 
Spec(ACCxll --$ SpeWCxl,_,,,) are geometrically regular [Ma, Sect. 
34.C]. Hence, from [Ra, p. 127, Corollary l] (and the faithfully flatness of 
A[ [x]] over A(x)), follows that A(x) is algebraically closed in A[ [xl]. 
In the special case that A is a field or a complete discrete valuation ring, 
the claim that A{ X} is algebraically closed in A[ [xl] also follows directly 
from Artin’s Approximation Theorem [Ar]. Now, let f(x)EA[[x]] be 
any algebraic power series. Thus we have f(x) E A(x). From the construc- 
tion of the Henselization A(x) as a direct limit of certain &tale extensions 

of A c-~l(,,,,~ see [Ra, p. 125, Theorem 23, it easily follows that there exists 
a subring B of A[ [xl] which is finitely generated over A[x] and &tale over 
A[.~] at (,EJZ , x) n B, such that f E B. (For simplicity we use (m, x) to 
denote (*PA, x) A[[x]].) Next, we use the fact [Ra. p. 51, Theorem l] that 
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any etale extension is locally a standard &ale extension. (Because we have 
this only locally, we need A to be local). Hence 

B (~~,.~,nB=(~C~~lC~l)~,,,,,A~.~,~~,~ (1) 

where cp E A [ [x]] satisfies an equation P(x, cp) = 0, with P(x, y) E A [x, y], 
(y one variable), and 

g (x, (P)4 (% xl. (2) 

Without loss of generality we may suppose that ~(0) = 0. Then (2) implies 
that (aP/8y)(O, 0) $ PP.Z. From ( 1) it follows that 

adx) + al(x) dx) + . . + a,(x) dx)’ 
Ax)= b,(x) + b,(x) q(x) + . . . + a,(x) q(x)” (3) 

with u,(x), h,(x)~A[x] and b,(O)+ im. Let 

W(x, Y I= 
ad-x) + al(x) y + ... + a,(x) y’ 
b,(x) + b,(x) y + ... + a,(x) y” EACCx,Yll~ 

and let 

R(l.Y)=Ywx),Y~~ (XY,YYGY,Y), 

(here xy denotes (x1 y, x2 y,..., x, y)). Note that R(x, y) represents a 
rational function of x, y. 

From Lemma 6.3(i), it follows that R(x, y) E A[ [x, y]]. Moreover, from 
Lemma 6.3(ii), and by expanding W(x, y) in a power series in x, y and 
using the additivity of 9, it follows that 

9,(N& Y)) = W(x, cpb)) =.0x). Q.E.D. 

6.3. LEMMA. Let A be an integral domain. Let x = (x1 ,..., x,), and let y 
be one variable. Let P(x, y) E A[x, y] and suppose that (8P/c?y)(O, 0) is a 
unit in A. Let (p(x)~A[[x]] and suppose that P(x, q(x)) =0 and q(O) =O. 
Then we have: 

(i) Y(~~/~Y)(~Y,Y)/P(~Y,Y)EACC~,YII, 

(here xy denotes (x, y, x2 y ,..., x, y).). 

(ii) Zf ic FU”‘,jc N, then 

9(y(xy)‘y’ g (xy, y)/P(xy, y)) = x’cp(x)‘. 
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Proqf: We apply the method of [Fu, Proposition 23. Write 

P(.u, .v) = (.Y- d-u)) Q(s, .I-). 

with Q(x, J>) E A[ [x]][y]. We have 

$=Q+ 
dQ 

(Y-d-U)) & 

and 

(2) 

From (1) and q(O) = 0, it follows that Q(0, 0) is a unit, since (i?P/dy)(O, 0) 

is a unit. Hence (l/Q)(13Qj@) E A [ [x, ~~11. Note that 

This proves (i). Next we have that 

because B is applied to a power series of the form J~!I(,YJ~, y), with 
B E A [ [x. .v]]. Moreover 

The Lemma now follows from (2) and (3 ). Q.E.D. 

Proof of 6.2(ii). By Theorem 6.2(i), there exists a rational function 
R(x,y)~A[[x,.~]l, such that .f(x)=94(R(x,y)). As before, y is one 
variable. Write 

R(x, y) = 1 a#,v’, 
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where i is a multi index. Define 

u,w, u,)-v,R(x, 0,) 
= 

Ul--01 

= 1 avxiu$$, 
j=kl +/I 

R,(x, U1r u2, u2) 

= 
UZRI(X, ~1, ~2)--2R,(x, ~1, vd= 

c 
i kl k2 12 

u2 - 02 
a+ uI u2 v2, 

j=kl+kz+lz 

We have 

~x,~,zx,,;..~,,-,,,~,~.~,,~,(R,~,)=~(R(x,y)). 

Since f(x) = ~(R(x, y)), this proves Theorem 6.2(ii). Q.E.D. 

6.3. Remark. If A is a Noetherian integral domain, then every power 
series f(x) E A [ [xl], x = (xi ,..., x,), which represents a rational function, 
can be written as 

with P(x), Q(x) E A [x] and Q(0) = 1. (1) 

This follows from the fact that A [ [xl] is faithfully flat over the ring of 
power series of the form (1) see [Ma, Sect. 24, p. 1721. However, this is 
not generally true when A is not Noetherian. 

6.4. Remark. The converse of Theorem 6.2(i) is also true. Let 
x= (Xl,..., x,) and let y be one variable. If f(x, y) is a power series which 
represents a rational function, then 9(f) is algebraic. Indeed 

Z,f(x4 Y) = w  f )(xt), 

and Z,y of a rational power series (t one variable, y one variable) is 
algebraic, see [ Fu]. 

Remark. The converse of Theorem 6.2(ii) is not true. Indeed it is 

641/N-5 
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known [Fu, p. 2731 that there exists a rational power series f(u, J: U) over 
@ in three variables such that ZXVZV,,f is not algebraic. But 

6.6. Remark. Christ01 [Chl] proves the case m = 1 of Theorem 3.1 by 
using the case m = 1, A a field, (due to Furstenberg [Fu]) of Theorem 6.2. 
In this remark we show how Theorem 3.1 follows by the same argument 
from Theorem 6.2. Moreover we can simplify Christol’s argument by taking 
for A the ring L, instead of a field. Note, however, that the proof of 
Theorem 6.2 is not elementary, while that of Theorem 3.1 given above is. 

Proof qf’ Theorenr 3.1(i). Let f ~iZ,[[x, ,..., x,]] be algebraic. Let 
s = (x ,1..., x m, x,+ , ,..., .x2,,,). From Theorem 6.2 and Remark 6.3 it follows 
that we can write 

.f = 4UQh where I= I *, Tm+ 1 Ix,,, +> . . L,.Y;, 

and P(x), Q(x)E Z,[x], Q(O)= 1. Let cp: Z,[[x]] --* Z,[[x]] be defined 
by cp(x,, a,xV)=CV a,x”“. For r= (I ,,..., Y?~,), O<r,<p, let II/,(x, a,,.~“)= 
C,, up,. + r,xv. Let s E N be fixed. 

Let V be the Z,/(p”) module of all F/QP’modp”, where FE Z,[x] has 
degree <d, where d will be chosen later. Note that Qp = (p(Q) mod p, and 
hence that QP = ((P(Q))~‘~’ mod p” Indeed if a = b mod p, then ap” s bP” 
mod@‘+‘. Note also that $,(gcp(h)) = tir(g) h and that ((p(Q))fl-’ = 
(p(Q”’ I). Hence 

$AF/Q”‘) - $,(F/(P(Q~‘~ ‘)I mod p” 

= t,br(F)/Qp”’ E t,b,(F) Q/Q@. 

Choose d > deg P + p’ deg Q. Then, since deg $JF) d (l/p) deg F, we see 
that V is closed under all the +, and that P/Q modp” is an element of V. 
Notice that V is finite. Let IV be the image of V under the diagonal map I. 
Clearly f modp” is an element of IV and IV is closed under $,. for all 
v = (r, ,..., r,,,), since I$(,,,) = til,Z. Theorem 3.1(i) follows directly from this 
and the finiteness of IV. Q.E.D. 

Proof of Theorem 3.l(ii). Suppose that the Taylor coefficients of f(x) E 
Z,[ [x, ,..., x,] ] satisfy congruences of the form ( 1) of Theorem 3.1. By 
Remark 2.2 there is an algebraic g E Zp[ [x, ,..., x,]] such that f = g mod p. 
Applying Theorem 3.1(i) to g it follows easily that (l/p)( f -g) satisfies a 
set of congruences of the form (1) of Theorem 3.1 with p” replaced by ps I. 
Hence by induction there is an algebraic hEE,[[x]] such that 
(l/p)(f-g)-hmodp”-‘.Thenfrg+phmodp”. Q.E.D. 
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7. SOME PARTICULAR RECURSIONS 

Let the a, E Z,, n E N, satisfy a, = F(n) a,_ i where F(n) =f(n)/g(n), 
f(n) =ny=l (Min + pi), g(n) = ny= 1 (yin + hi), where the ai, fiil Yi, 6;~ z 
and (pi, p) = (yi, p) = 1. 

7.1. THEOREM. With the above notation let y(x) = C a,x” and let s E N. 
Then there is an algebraic power series j(x) E Zp[ [x]] such that y(x) z j(x) 
mod p’. 

ProoJ: Let 0 < j <p. Iterating the above recursion formula p times we 
have that 

a,k+i=F(pk+j)F(pk+j-l)...~(Pk+j-P+l)a,,,~l,+i 

= 
! 

fi F(pk+r) ap(k~I)+., 
r=.j-p+ I > 

a;pk + (air + pi) 

i=l r=j-p+l y;pk+(Yir+di) 

Now for .each i exactly one of the terms air + pi is divisible by p. Let it be 
equal to /3: p. Similarly for each i exactly one of the yjr + hi is divisible by p. 
Let it be equal to 6( p. Cancelling the p’s we get 

where we have collected into the second factor all the factors not divisible 
by p. Notice that u0 and u0 are &modp and the u,(k), vi(k) E Z[k]. Let 
u(k)=u,+u,(k)p+ *.. and v(k) = v0 + v,(k) p + . . . . Then for every value 
of k E N, u(k) and v(k) are p-adic units. Note that for every k E N we have 
kp’m’(p-‘)fs= k”modp”. Reducing u(k) and u(k) modulo p’ and using the 
above congruence we see that there are polynomials u(k) and C(k) of 
degree <p”- ‘(p - 1) + s with coefficients from the set (0, l,..., ps - 1) such 
that for all kE N we have u(k) = u(k) and u(k) = C(k) modulo p’. Let 
R,j= zZ(k)/i?(k). Hence we have that if the iipk+, are determined by the 
recursion formula ii,, + j = ny=, (aik+fll)/(Yik+6:) R,,(k) iip(k-,)+,, and 
the initial condition ii, = aj modpord(q’+s, where ord(a,) is the p-adic order 
of aj, then iipk+j-aapk+, mod ps for all k. Iterating the above procedure we 
get for every e and every j with 0 6 j <p’ that there exist Diei, 6, E Z and 
rational functions R,,(k) with numerators and denominators of degrees 
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<ps ‘(p - 1 ) + s and coefficients from (0, l,..., p’ - 1 ) such that if the 
apek +, satisfy the recursion formula 

and initial condition 
z, s aj mod pord(u,) + s (3) 

then iipCk + i = a,,, + ~ modp” for all k E N. Now let A E N be such that 
JcI,], I/l,/, Jyil, 16J <A for all i. Notice that lB,!l = I(air+Jli)/~] 6 
(Iail (p-l)+]/?il)/p since j-p+ldvdj and Odj<p. Hence I/l(I<A. 
Similarly /Sil 6 A. Hence, by induction ]/?,I <A and ]6i,j] 6 A for all i, e, j. 
This shows that there are only linitely many different recursion formulas 
(2). If e, j and e’, j’ are such that the corresponding recursion formulas (2) 
are actually the same, and if aj, a;, satisfy ord(a,) + s < ord(u;), then, since 
all the a; E Z,,, we must have that ii,,,, +,, = 0 mod p’ for all k. Now con- 
sider the above procedure of determining recursion formulas (2) and initial 
conditions (3). The first time a particular recursion formula F occurs, let its 
initial condition be aF. We can note ord(a,) + s = vF say. If this recursion 
formula F occurs again in the procedure we know that the corresponding 
sequence of the ZPek + j mod p’, k = 0, 1, 2 ,..., is determined by the recursion 
formula F and dj mod pvFt .‘. Hence we see that there are only a finite num- 
ber of different sequences CTpek + j modp”. Hence for e large enough we will 
have that for every j with 0 d j<pe there is an e’ <e and a j’ with 
0 <y < p”, such that atik+ j = ape,k+,. mod p’, for all k. From Theorem 
3.1 (ii) we now have immediately that there is an algebraic power series 
J(X) = C ti,x”~ ZP[ [x]] with a, = CI, mod p’, for all n E N. Q.E.D. 

Remarks. (i) In the above proof we could have considered recursions 
of the form a, = (j(n) h(n)/g(n) k(n)) a,, i, with the f(n), g(n) as above 
and the h(n), k(n)cH[n] such that h(n), k(n) are units in H, for all no N. 

(ii) If one allows ,f(n) to have a zero in Z,\Q then u(x) need not be 
algebraic. Indeed, for CL E Z,\ Q, the power series (1 - x)’ E F,[ [xl] is not 
algebraic, see [Ch2, Sect. 9 Example 11 or [M-V]. 

(iii) Christ01 and Dwork have informed us that Theorem 7.1 can also 
be proved (at least for almost all p), by using the theory of differential 
equations with strong Frobenius structure. 
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