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We extend some results of Christol and Furstenberg to the case of several
variables: {1) A power series in several variables over the p-adic integers Z,, is con-
gruent mod p° to an algebraic power series if and only if its coefficients satisfy cer-
tain congruences mod p*. (2) Any algebraic power series in m variables over a field
K can be written as the diagonal of a rational power series in 2m variables. We also
give an elementary proof of a result of Deligne: The diagonal of an algebraic power
series in several variables, over a field of nonzero characteristic is algebraic.
Moreover we show that the diagonal of an algebraic power series over Z, is
algebraic mod p*, for every 5. We also obtain other related results. ) 1987 Academic

Press, Inc.

1. INTRODUCTION

We prove several results about algebraic power series and diagonals of
algebraic power series. If R is an integral domain, then R[[x]] denotes the
ring of formal power series in the variables x = (x,...,, x,,,) over R. We call a
power series y{x)e R[[x]] algebraic if it is algebraic over R[x]. Section 2
contains a lemma that we use repeatedly in the rest of the paper. In
Section 3 we prove the following (Theorem 3.1):

If p(x)=>a,x" is an algebraic power series (x=(x,...,X,,),
v={(v,..., v,,)) with the a,e Z,, the p-adic integers, then for any s > 0 there
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is an e € N such that for each i = (iy,..., i,,), with 0<i,< p, there isan e’ < e
and an I’ = ({},..., [,,), with 0 < i< p¢, such that for all v

— 5
ap"v +i= ap"'v + 4 mod p.

(Here pv+i=(p°vi+1ii,., pv,+i,).) Conversely if the a,eZ, satisfy
such a set of congruences then there is an algebraic power series
y=>ax"eZ,[[x]] with @ =a, modulo p*. The case s=1 of this
theorem is contained in Christol, Kamae, Mendes-France, and Rauzy
[C-K], and the case m=1 is proved in Christol [Ch1] by somewhat dif-
ferent methods (see Remark 6.6). Recently Christol [Ch2] has extended
the case m=1 to nondiscrete valuation rings. In [C-K] the theorem is
proved that if Fis a finite field then y(x,) =Y a,x7e F[[x,]] is algebraic if
and only if the function n+ a, can be computed by a finite machine. The
generalization of this theorem to power series modulo p* is immediate from
Theorem 3.1 by using the method of [C-K7. For the sake of completeness
we provide details in Section4. If y(x)=3a, .., x{'" - xi= then the
diagonal 1, . (v)isdefined by I, (y)=3 a,,,,4y...\, X}1x5 - xm We define
the other diagonals 7, , similarly. By a diagonal we mean any composition
of these diagonals. In Furstenberg [Fu] it is shown that (a) if y(x) is a
rational functione F[[x]], where F is a field of characteristic p #0, then
any diagonal of y is an algebraic function and (b) if y(x,) is an algebraic
function in K[[x,]J] (K any field) then there is a rational function
R(x,, x;)e K[[x,, x,]] such that y(x,)=1,, (R). In Deligne [D1] it is
shown that (c) if F is a field of characteristic p#0 and y(x,,.., x,,) €
FL[xy,.. x,,1] s algebraic then any diagonal of y is also algebraic, and (d)
if yeZ[[x,,..,x,]] is algebraic then for almost all p, and for all s, the
diagonal of y modulo p* is algebraic. In Section 5 we reprove (c) and also
show that if R is a complete discrete valuation ring with uniformizing
parameter 7 and residue class field of characteristic p#0, and if
yeR[[x,,., x,,]] is algebraic, then for any diagonal I(y) and any seN
there is an algebraic power series je R[[x,,.., x,,]] such that I(y)=7
modulo n°. In Section 6 we extend (b) to the case of algebraic power series
in several variables over a local Noetherian integral domain A4 which is not
pathological: If y(x,,..., x,,)€ A[[x{,.., X,,]] is algebraic, then there is a
rational power series R of 2m variables so that y is a diagonal of R. We
also give an application of this theorem (Remark 6.6). In Section 7 we
show that power series 3" a,x}e Z,[[x,]] with the a, defined by a recur-
sion of the form a, = F(n}a, _,, where F(n) is a rational function over Q
all of whose zeros and poles belong to Q, are algebraic modulo p* for all s.

We would like to thank B.Dwork for stimulating conversations,
G. Christol for sending us valuable information and L. Van Hamme for
bringing reference [C-K] to our attention.
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2. A UseruL LEMMA

First we introduce some notation. F is a perfect field of characteristic
p#0; x=(x,,., x,) and F[[x]] is the ring of formal power series in
Xy, X,, over F. Let S={o=(a(1).., a(m)): 0<a(i)<p for i=1,..mj.
We shall denote elements of S by the letters «, 8, or y, sometimes with sub-
scripts. Note that for any y e F[[x]] there exist unique y,(x)e F[{x]1] for
«eS such that y(x)=3,.sx"y2(x). (Here x*=x3"---x%™) We can
iterate this so that p(x)=3,,.sx*"?p2(x) and so on, where
B = (pB(1 ), pB(m)). If y(x)=3, a,x" where v=(v,.,v,) is a multi-
index then y, (x)=3, a,‘,f”mx‘", where pv + o= (pv, +a(l),..., pv,, +alm)).
Vap(x)y= ap/vzﬂwﬁ x" and so on. If Fis the p element field then we have
y.(x)=3, 4, ,x" and so on. Suppose now that y(x)e F[[x]] is algebraic
(ie., is algebralc over F[x]). Then y(x) satisfies an equation of the form
S5_, gdx) y" =0 with the g/(x) e F[x] and g (x) #0. (Because F(x)(y)is a
finite dimensional vector space over F(x).) We claim that we can always
take r =0. Indeed, suppose r>0: Since F is perfect we can write g(x)=
Saes g{;( ) x* Hence we have Zae s3i_, (g~ y™) x* =0 which is equivalent
to the p™ equations > f_, g,V “'=0. For at least one a we have that
g,. #0 and hence y satisfies an equation of the above form with r replaced
by r — 1. Hence we have that if y(x) is algebraic then it satisfies an equation
of the form

f(’c)v-Z SAx) ¥ =L(y s ¥7) (1)

i=1
where f(x)#0 and L is linear over F{x]. In the rest of the paper we shall

make repeated use of the following Lemma. Part (ii) in the case m=1,
occurs in {C-K].

2.1. LeMMA. (i) Let y(x)eF[[x]] be algebraic. Then for e large
enough we have that for every (..., o) € S there is an F linear combination
M, ol Yo poe) Of the vy g with €' <e such that

xy -
}7a| e = M_ﬂ ,..1('(..., }71;] R RN )

(i) If, in addition, F is a finite field then we have that for e large
enough and each (a,,.., .)€ S¢ there is an ¢’ <e and (B,,.., B.)e S such
that

_V,,l.,.,‘,=}7ﬁ,“.m,.
Proof. y satisfies an equation of the form (1) above. Letting
y=3.cs¥ox* and substituting into (1) we get

Y fx)yEx=L(}" ., 7). (2)

xe S
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Multiply (2) by £~ ' and express f”~!(x) L in the p-basis {x*} to get
Y fr) yixt = X LY ) = Y Ly ¥ )% (3)
xe S zxe§

Hence we have the p™ equations
S Y= Lo(prs y7 7). 4)

Suppose now that deg (f)=N and deg.(L)= K where “deg,” means the
total degree in x. Then

deg (f7~ 1()c) L(y’,..., y”s)) =K+(p—-1)N
and

K+(p—-1N

deg (L,) <
14

Muitiply (4) by /7~ '(x) and substitute from (1) for f(x)y to get
SUX) y,=1772%) L £ (X) y, f(x) ¥,
=f772x) L L(Y s Y7), () ¥P,0). (5)

Set v, =3, yi,x", where B=(B,,.., B,,) with 0< B, < p, substitute into (5)
and write the new equation in the p-basis {x”} to get

YY) X =Y (L s v7 )Y 2P (6)
B B

Equating the coefficients of x” and taking pth roots we have
1

f(x)ya/i:Laﬂ(y’“'a ypk ). (7)

The deg, of the right-hand side of (5) is <(4/p)+A4 where
A=(p—1)N+K, so deg, (L,;)<(A/p*)+ (A/p). Iterating this procedure
we get that

f(x)yaﬂy-“=Lqﬁ7--'(y5"'ayphl)o (8)

where deg,(L,g,...) < (A/p)+ (A4/p*)+ (4/p*)+ -+ = A/(p—1). Note that
L,s. .. is linear in y, y”,.., y”"', with degree in x bounded by A/(p—1).
These polynomials lie in a finite dimensional vector space over F. Hence for
e large enough we have that

Yormroae =My g (s Yo par s
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where M, o, is an F linear combination of the y,,..., . for ¢’ <e. ln the
case that F is a finite field the set of all possible L,ﬂ Av v v "y is
finite and so (i1) follows. Q.ED.

2.2. Remark. Note that if e'<e then each y, .., is an F[\] linear
combination of the yf " ,, and that the coefficient of 4 ', is a
polynomial in x of degree less than p* ¢. Hence it follows that for e large
enough the y, ..., satisfy a system of equations of the form

Varome = Loy a e Vg S VR e hs (9)

ie, each y, ..., is an F[x] linear combination of the Vo g V5 m oreees
¥5,...5,» and the coefficient of y7 ..., is of degree less than p The Jacobian
of this system of equations (in the unknowns y, ..., }is 1. Hence the y,, ..,
are all algebraic. (see, e.g., [La, p. 268]). Further it follows that if R is a
complete discrete valuation ring with prime p such that R/p = F then there
are y,, ..., (x)€ R[[x]], all algebraic, such that ..., =y, ..., modulo p.
This is merely a variant of Hensel's Lemma. For the sake of completeness
we include a proof. We must show that if we have a system of equations

flY 0 Y =0,  i=1..k

with the f;e R[[x]][¥,,... Y] and a ¥ =(¥,,.., P,) € R[[x]]* such that

f{r)=0 modpR[[x]]

and

det <sf’) (F)=1 modpR[[x1]

i

then there is a je R[[x]]* satisfying f(7)=0 and y,= j, mod pR[[x]]
fori=1,.,k It is sumcient to show that there exist Z, e R[[x]]" such that
if y=y+3"_,p'z; then f(y)=0 mod p"*". Suppose that Z ..., Z, have
been shown fo exist. Let F=F+37_, pZ, and let y=3+p"* 'z Then,
writing f for (f,,... f:), we have by Taylor’s Theorem that f(y)=
f(f’+P"+'«)‘f(f)+(@f/ﬂv)(f’)v”“"+PZ"”H( ) where (af/ﬁ}’)—
for some vector L with entnes from R[{x]]. Hence we must see that z can
be chosen so that p” 'L 4 p"* (3f/0y)(¥) z=0 mod p" *?3, i.e., that there is
a z such that L+ (8f/dy)(y)z=0 mod p. Since det(df/dy)(y)=1 mod p
there is a matrix 4 with entries from R[{[x]] such that A(6f/8y)( ¥) =1, the
identity matrix, and hence we can choose Z,, , = —AL.
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3. ALGEBRAIC POWER SERIES mod p*
The main result of this section is

3.1. TueoreM. (1) Let flx)=2%,a,x"eZ,[[x]], x=(x{,, X,), be
algebraic. Let se Ny. Then there exists an e € Nq such that for all j<p®,
there exist ¢’ <e and j < p® such that

Apey y ;= Ay, mod p’, (1)
for all v. Here v, j, j are multi-indices eN™, and e, ¢ eN. By
J=(Jyser Ju) < Pp° we mean j, <p‘,.., j, <p°, etc.

(1) The converse is also true: Let f(x)=3, a,x"eZ,[[x]], and let
se Ny. Suppose that there exists an e € Ny such that for all j< p°®, there exist
e’ <e and j <p* satisfying (1). Then there exists an algebraic g(x)e

Z,[[x]] such that f(x)=g(x) mod p°".

Remark. The case s=1 is contained in [C-K]. The case m=1 is
proved in {Chl] and [Ch2]. To prove 3.1(i}) we shall first prove 3.1(ii).
First we introduce some more notation.

3.2. Notation. Let K be any ﬁgld and f(x)eK[[x]]. Let aj,.,a. €S,
with S as in Section 2. We define f,,..., (x)e K[[x]] by

flx)= Y xurmroertaf (),

If K is the p element field F,, then fa]._.%(x);falmle, where £, ..., is as
defined in Section 2.

Note that the vth coefficient of £, ..., (x) is equal to the
(Pv+oa,+ap+ - +a,p’”ith (1)

coefficient of f(x).

Proof of Theorem 3.1(i1). From 3.1(1) and 3.2(1) it follows that for all
o, @, €S there exist ¢’ <e and a),..., a, €S such that

f[ll"‘ﬂy(x)Efdi"'a;r(’x) mOdps9
and hence
Furr a0V = Ly f5,- 5 (X7 77),)  mod p, (1)

where L is a linear polynomial without constant term (depending on
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%y, &,) Over Z[ x], and where the f,...., . run over all elements of S. If
s=1, then (1) is equivalent to
Jar s X)= Ll (Fy g ()Y ") mod p. (2)

Since the Jacobian of the system (2} is congruent to 1 mod p, it follows that
the f361 -s,» (and hence also f), are algebraic mod p, and can be lifted to an
algebraic power series over Z, (see Remark 2.2). We will prove by induc-
tion on s that the fd 2 and hence also f'), are the reductions mod p* of
algebraic power series g‘“‘ x)eZ,[[x]]. Let s> 1. By the induction
hypothesis there exist algebraic power series #'* *'(x)e Z,[[x]] such
that

Jar 2 X)=R"72(x)  mod p* !
Set

Japax) = A0 0x) 4 po 1A x),
From (1) it follows that

A (x) = Lo AP TT)L) + RWT ) mod p,

and hence

AF 3 (x) = Loy (AP F(x))P )+ R™ % (x) modp,  (3)

where

R (x)=p > [ %) Ly AP, )],

Note that R *)(x)eZ,[[x]] is algebraic. The system (3), in the
unknowns 4*'""*)(x), has Jacobian congruent to 1 mod p. Thus Hensel’s
Lemma implies that there exist algebraic power series 4™ *)(x)e
Z,[[x]] such that

Z(fxl‘“‘zy)(x)EA(‘II""IP'(X) modp
The Theorem 3.1(ii) now follows from

Far XY =R (x) 4 p* 1@ %) (x) mod p. Q.E.D.

Next we turn to the proof of 3.1(i), but first we need some notation and
some lemmas.
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3.3. Notation. 1f aeZ, then ae F, denotes the residue class of a mod p.
Let 0 be the map F,— Z,: i+ i for i=0,1,.,p—1. This map induces
(coefficientwise) a map 0. F,[[x]]—Z,[[x]]. Let ¥,a,x’eZ,[[x]].
The ith p-adic digit of a, will be denoted by a,(i). Thus a,i)e
{0,1,.,p—1} and a,=3* ;a,(i) p"

34. Lemma.  Let f(x)e F,[[x]] be algebraic. Let seN,. Then there
exists an algebraic power series g(x)e Z,[[x]] such that

B(f(x))=g(x) modp".

Proof. Let f(x)=2%,c,x", with ¢,e F,. From Lemma 2.1(ii) it follows
(see 3.2(1)) that there exists an ¢ € N, such that for every j< p° there exist
an ¢’ <e and j' < p° such that

Copeqj = Cop? v jrs

for all ve N™. But this also implies that

0(cypey ) =0(c\pe 4 )

The lemma follows now by applying 3.1(ii) to X, 8(c,) x". Q.E.D.

Remark. In general 6(f(x)) is not algebraic. For example,
flx)=% x" € F,[[x]] is algebraic but 6( f(x)) is not algebraic since every
algebraic function satisfies a homogeneous, linear differential equation, and
hence, if it is not a polynomial, there is a bound on the number of
successive Taylor coefficients which can be all zero.

3.5. ProposITION.  Let 3, a,x"e€Z,[[x]] be algebraic. Let ie N. Then
Y, a,(i) x "e F,[[x]] is algebraic.

Proof. ltisclear that Y, a,(0)x' =Y, 7, x"€ F,[[x]] is algebraic, since
>, a,x’ is algebraic. For i >0, the proof is by induction on i. Note that

2 ay(i) x"=p~h(x),

v

where

h(x) =§ a,x*—0 (; a,(0) x"> —po (; a,(1) x”)
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By the induction hypothesis and Lemma 3.4, there exists an algebraic

power series g(x)e Z,[[x]] such that

i+ 1

hix)=g(x) modp

Hence Y ,a,(i)x’'=p~'g(x) is algebraic, since p 'g(x)e Z,0[x]] 1s
algebraic. Q.ED.

Proof of Theorem 3.1(i). It is sufficient to prove that

Aoy 4 (1) = ape, o (7) fori=0,1,.,5s—1 (1)

From Proposition 3.5 it follows that

Y EY ahxeFlIx]1]
is algebraic. From Lemma 2.1 it follows that, for each j, the set of all
Vilisay» for all possible «,, a3, a;,..€S is finite. Hence the set of all
s-tuples

(0) (1 (5= 1)
(yoqotzay'" yaluzlx}"""" }L‘S]otzmy“ )
is finite. Hence there exists an e € N, such that for all «,,..., «, € S there exist
0 1 e
e’ <e and ayj,.., o, € S such that
) y=y;’i"__1;, fori=0,1,.,s—1. (2)

’
.”aqa;--wz

Formula (1) now follows from (2) and 3.2(1). Q.E.D.

Remark.  The results which we have proved for F, and Z, remain true,
with essentially the same proofs, for any finite field F, (¢ =p") and any
complete discrete valuation ring R, of characteristic zero, with prime p and

R/(p)=F,.

4. FINITE MACHINES

We recall that a finite machine M consists of the following. (i) A finite set
& of (internal) states, one of which is the initial state, (ii) A finite alphabet,
#, of inputs, (iii) A finite alphabet @ of outputs, (iv) A transition function
¥ x4 > and an output function o: & — (. The machine, starting in
the initial state, is fed a sequence i,, i,,..., from #. At the jth stage it is in
internal state s, it “reads” input i;, enters the internal state s = (s, i;) and
displays output o(s’).

We shall also want to consider machines with m inputs i, , i,..., for each
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j=1,.., m. At each stage it will read one “digit” from each input. We can
always reduce such a machine to one with only one input by interweaving
the inputs i, i3y, > i12,--. FOr more information about finite machines
the reader is referred to [Mi].

The machines we shall consider will have # = {0, 1, 2,.., p— 1}, so that
an input i, i,.., can be considered as a natural number Y, i, p~". ¢ will
be the elements of Z/p*. Hence for each input v e N™, in p-adic notation, the
machine M produces an a,e€ Z/p*. We shall say that the sequence {a,} is
generated by M.

4.1. THEOREM. The sequence a,e Z,/p*, v=(v,,.., v,) e N™ is generated
by a finite machine if and only if there is an algebraic power series y(x)=
Y. a.x"eZ,[[x]] such that a,=a, mod p*.

Proof. Suppose that the a, are generated by a finite machine M.
Choose e so large that for every se % if M ever enters state s then it does
so on an input of length less than e. This means that for each i = (i,,..., i,,)
with 0<i; < p° there is an ¢’ <e and an i’ = (f,.., i,,) with 0 <i; < p* such
that a,,,,=a,,,, for all v (ie, M is in the same state after ¢ stages
starting with input i as it is after ¢' stages starting with input ). The
existence of y(x) now follows immediately from Theorem 3.1(ii).

Conversely suppose that there is an algebraic power series
yix)=Y ax"'eZ,[[x]] with d,=a, mod p’. From Theorem 3.1(i) we
have that for e large enough and for every i = (iy,..., i,,) with 0 <i; < p* for
Jj=1,.,m there is an e¢'<e and an i =(i,.,1,) with 0<j; <p® for
j=1...., m such that

g — 5
Ay =4y, modp’.

We equip our machine with a table of all the values of the @, mod p* for
= (i i},) with 0<i/<p®. We compute as follows. Given v write
v=p7 +i. Use the above congruence to replace v by v’ = p¢v+i'. Use the
table to display @, and iterate. QE.D.

Remark. The same result is true if we replace Z, by any complete dis-
crete valuation ring R of characteristic zero, with prime p such that
R/(p)=F, for any finite field F. The only changes necessary in the proof are
notational.

5. DIAGONALS OF ALGEBRAIC POWER SERIES

In this section we shall prove two results about the diagonals of
algebraic power series. Theorem 5.1 gives an elementary proof of a result of
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Deligne [DI1, p. 129], and Theorem 5.2 is a strengthening of [ DI, 3.8]. We
apply Theorem 5.2 to give an analogue of Proposition 3.5 for “Teichmiiller
digits™ (Theorem 5.5).

Throughout this section x = (x .., x,,). If ¥(x)=3 a,,..., x)' -~ x)7 then
Ioo(¥)=2a,, ., XXy - x» The other dxdgonals I, are defined

similarly. By a diagonal we mean any composition of the 1,\-,‘«,- We shall
also need the nondiagonals J, (y) =2, .. d, .., X" X7

Vin m

5.1. PrRoPOSITION. Let F bhe a field of characteristic p#0, let
X =(X{s, X,,) and let v(x)e F[[x]] be algebraic. Let I be any composition
of the 1, ,’s and the J, 's. Then I(y) is algebraic.

Proof. We may suppose that F is perfect. It is sufficient to prove the
proposition for /=1, and for J=J, . We know from the remark follow-
ing Lemma 2.1 that for e large enough the y, ..., , for (..., « ) € §, satisfy
a system of equations of the form

: — , P
Vayow =Ly 0 VB s Y g hs (1)

where L, 2 is a linear combination over F[x] of the y§ . ..
y,;, v 1Bl .5.» and the coefficient of 5 ., has degree less than p"
Hence we have for each «,---«, that

_Vaq T Z q/h“'/f“i(x) yﬁl, e fe? (2)

where /> 1 and the degree of g, .5 {x)is <p" Note that I{(gy5, ..., )=1(q)
Iy 5 )=Hq)I(yp,.. 4))", where we have written ¢ instead of g4,.. ;.
Hence applying / to the system (2) we get a system of the form

I(}’;,»»»al,)zz I(qﬂl---/f,,i)(l(y/f]-»-/fl.))p

with j always >1. Since the Jacobian of this system, in the unknowns
Iy, ..,) is 1 we have that all the I(y, . ,) are algebraic. Since

p=3 xutpnt oAyt we have that [(y)=3 J(xX*+ret = +r n)

((y4,-.2,))" and hence tﬁat 7( y) 1s algebraic.

Next let J be any one of the J, . and let I be the corresponding
I, Note that Syt )= q(J(y/;l )+ H@) U pp,.. )7, where
again g denotes qg ...p,.(x) Wh]Ch has degree < p'. Hence if we apply J
to (2), we see by the previous argument, and the fact that the I{y; .. 4 )
are  algebraic, that all J(y,..,) are algebraic.  Since
J(y) — J(Z,\"]erahL +p'**lal,y§‘l‘mav) — Zxaq+pxg+ »“+pt’7la(,(J(y11mae))p" +
Y J(xst et e w(J(p, L ))”, we see that J(y) is algebraic.  Q.E.D.

Next let R be a complete discrete valuation ring of characteristic zero,
with uniformizing parameter 7 such that R/(n)=F is a field of charac-
teristic p # 0.

i
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5.2. THEOREM. Ler f(x)e R[[x]1] be algebraic and let se N. Let I be
any diagonal. Then there exists an algebraic power series g(x)e R[ [x]] such
that I( f )= g mod =°.

5.3. LemMA. Let f(x)e R[[x]] be algebraic. Then there exist algebraic
power series

glxy, X300 X)) ER[[X1, X550 X, 1

h(x)e R[[x]1],
such that
f(x)=g(x1X5, X340, X, )+ A(X) mod 7
and
I, .(h)=0.
Proof. T..(f)= I.,(f)eF[[x,, X3, X,, 1] is algebraic, and hence is

the reduction modn of an algebraic power series g(x,, xs..., X,,) €
R{[x;, X35y X,,]]. We have I, (f)=gmodn. Let J, ., be as before.
Jol FY=J o f) =*Two(x) e F[[x]] is algebraic. Note that wo(x) can
be written as

WolX) =X ug(X, X1 X5, X300y X,) with u,e F[[x]].

Since wq(x) 1s algebraic, also uy(x) is algebraic. Hence wug(x) is the
reduction mod = of an algebraic power series u(x)e R[[x]]. Thus a(x)=
u()(x)ﬁ and x[xz( f ) = WO(X} = xla(x‘iv Xy Xzs Xaseey xm)' Hence ‘,xl.\*z(f) =
xu(x;, X, X5, X3,.., X,,) mod 7. Analogously there exists an algebraic power

series v(x)e R[[x]] such that
ngxl(f ) = x2v(-xl X35 X2, X350 xm) mOd .

Now take A(x) =4 x,u(x,, X, X3, X340 X,,) + X20(X, X510 X5, X500y X

QED.

Proof of Theorem 52. 1t is sufficient to prove the theorem for the
diagonal operator I, .. From the previous lemma the existence of

algebraic power series g, € R[[x,, x3, X,,.., x,,1] and s, € R[[x]] follows
such that

f(x)=g(xyx5, X3,..} F A(x) mod=n and I, (h)}=0.

Let fi(x) = (1/n)( f(x) — g(x, X3, x3...) — h(x)) € R[[x]]. Applying the
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lemma to f,(x) and so on, we obtain algebraic power series g,, g4,....
g. € R[[x,, X5, X, 1] and hs, k..., h,e R[[x]] such that

J(x)=g1(x x5, Xy, ) F A0+ 7 g5(x, Xy, X3,..) + ()

+ o+ g X, x,, Xy )+ 1 Th(x) mod nt,
and /,, .(h;)=0. Hence
L, (f(x)=g +ng,+ - +7° " 'g, modr" Q.ED.

5.4. CoROLLARY. Let f(x)=> a,x*eR[[x]] and g(x)=3 b,x'e
R[[x]] be algebraic. Let h(x)=Y, a,b,x* be the Hadamard product of f
and g. Let se Ny. Then there exists an algebraic power series r(x)e R[[x]]
such that r(x)= h(x) mod n".

Proof. This follows from Theorem 5.2 and

1 wn Ix,,,_v,,,( S(x) gy))= h(x). QE.D.

X1y

1

Remark. Theorem 5.2 in the case that R/(n) is a finite field follows
immediately from the results of Section 4. The use of the results of Sec-
tion 4 can be replaced by an application of the diagonal to a system of
equations of the form (1) in the proof of 3.1(ii) and an argument like the
proof of Theorem 3.1(i1).

Next we use Theorem 5.2 to prove an analogue of Proposition 3.5 for
“Teichmiiller digits.” Let R be a complete discrete valuation ring of charac-
teristic zero, with uniformizing parameter n such that R/(n) = F is a perfect
field of characteristic p # 0. Then there exists a unique homomorphism y of
the multiplicative group of F into the group of units of R such that y(z) =z
for all ze F, where the overbar denotes reduction mod(n), see, e.g., [Gr,
p. 71]. The element y(z) is called the Teichmiiller representative of z. If
ce R is such that ¢=z"", then ¢”"=y(z) mod n"*'. Every element ae R
can be written in a unique way as

a=a(0)+a(l)n+aR)n*+ - +a(i) '+ -,

where each a(i) € R is the Teichmiiller representative of some element in F.
We call a(i) the ith Teichmiiller digit of a. If f(x)=Y, a,x” € F[[x]], then
we define y(f(x))=2,7(a,) x*e R[[x]], where we take y(0)=0. With
these notations we have

5.5 THEOREM. Let f(x)=3,a,x"€ R[[x]] and let se N,. Then f(x) is
congruent mod n° to an algebraic power series in R[[x]] if and only if
>, ali)x e F[[x]] is algebraic for i=0, 1,..,s— 1.
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Proof. The theorem follows from Lemma 5.6 below, by using the same
argument as in Proposition 3.5. Q.E.D.

5.6. LEMMA. Let f(x)e F[[x]] be algebraic. Let seNy. Then there
exists an algebraic power series g(x)e R[{x]] such that

Y f(x))=g(x) modr’.

Proof. Write f(x)=Y, a,x*, with a,e F. Let b,=a? “". Then 3, b, x*
is algebraic, since it equals

Sy

From Remark 2.2 it follows that there exists an algebraic power series
3. c,x" € R[[x]] such that ¢,=b,=a? """, From Corollary 5.4 it follows
that there exists an algebraic power series g(x)e R[[x]] such that

gx)=Y ¢ 'x* mod

The lemma now follows from the congruence y(a,)=c¢? ' 'mod n*. Q.E.D.

6. REPRESENTATION OF ALGEBRAIC POWER SERIES AS
DIAGONALS OF RATIONAL POWER SERIES

In this section we prove (Theorem 6.2) that any algebraic power series in
any number of variables over an excellent local integral domain 4 can be
written as a diagonal of a power series over 4 which is rational. The special
case of algebraic power series in one variable over a field is contained in
[Fu]. In Remark 6.6. we show how this representation can be used to give
a short proof of the result in Section 3, following Christol’s approach
[Ch1].

Roughly speaking, an excellent ring is a Noetherian commutative ring
which is not “pathological”. For the definition of excellent ring we refer to
[Ma, p.258]. We recall that

(i) Z, any field k, and any complete local Noetherian ring are
excellent.

(ii) If 4 is an excellent ring, then any finitely generated A-algebra is
excellent.

(iii) Any localization of an excellent ring is excellent.

(iv) A discrete valuation ring R is excellent if and only if the fraction
field of its completion is separable over the fraction field of R.

(v) An excellent ring is Noetherian.
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6.1. Notation. Let A be any integral domain. Let x = (x,..., x,,) be as
usual, and let y be one variable. Let

flx, y)= Z Qi irim. /'XII‘ e x:';,’,}./ eAl [.\’, .1'] 1.

. imaf
We use the following notation

I(f(x,y))= Z Qi iyt X1 X0

J=iitit o i

6.2. THEOREM. Let A be any excellent local integral domain, and let
x=(X,m, X,;,) as usual. Let f(x)e A[[x]] be an algebraic power series.
Then we have:

(i) There exists a power series R(x,y)e A[[x,y]], with y one
variable, that represents a rational function of x,y, such that f(x)=
Z(R(x, y)).

(1) There exists a power series S(x,uye A[[x,u]l, u="(u ., u,,).
that represents a rational function of x and u, such that

f(x)=1x|u1[x3u2”.1 S(x’ u)'

Xty

Proof of 6.2(i). Let » be the unique maximal ideal of 4, let (x) be the
prime ideal of A[x] generated by x,, x5,.., X,,, and let (», x) be the
maximal ideal of A[x] generated by » and (x).

We denote the localization of A[x] with respect to the maximal ideal
(s, x) by A[x],, ., We will use the notion of Henselization of a pair (R, I)
consisting of a ring R and an ideal / of R, see [Ra, p. 124 Definition 4]. Let
the pair (4{x}, (x)) be the Henselization of the pair (4[x],,, ., (x)). Thus
(A{x}, (x)) is an Henselian pair although in general 4{x} is not an Hen-
selian ring. We have 4{x} < A[[x]]. Since A is excellent, the fibers of
Spec(A[[x]] - Spec(4[x],,,.,) are geometrically regular [Ma, Sect.
34.C]. Hence, from [Ra, p. 127, Corollary 1] (and the faithfully flatness of
A[[x]] over A{x}), follows that 4{x} is algebraically closed in A[[x]].
In the special case that A4 is a field or a complete discrete valuation ring,
the claim that 4{x} is algebraically closed in A[[x]] also follows directly
from Artin’s Approximation Theorem [Ar]. Now, let f(x)e A[[x]] be
any algebraic power series. Thus we have f(x)e A{x}. From the construc-
tion of the Henselization 4{x} as a direct limit of certain étale extensions
of A[x],,, ., see [Ra, p. 125, Theorem 2], it easily follows that there exists
a subring B of A[[x]] which is finitely generated over A[ x] and étale over
A[x] at (s, x)n B, such that fe B. (For simplicity we use (s, x) to
denote (», x) A[[x]].) Next, we use the fact [Ra, p. 51, Theorem 1] that
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any étale extension is Jocally a standard étale extension. (Because we have
this only locally, we need A4 to be local). Hence

B(m,x)m8=(A[x][(p])(m‘x)n,q[x][(”, (1

where ¢ € A[[x]] satisfies an equation P(x, ¢)=0, with P(x, y)e A[x, y],
(y one variable), and

opP
a_y (X, (P)¢(m’ x)' (2)

Without loss of generality we may suppose that ¢(0)=0. Then (2) implies
that (9P/0y )0, 0) ¢ ». From (1) 1t follows that

_%o(x)+ai(x) o(x) + - +a,(x) p(x)

S = DB eI+ Fa ) o)

(3)

with a,(x), b{x)e A[x] and by(0) ¢ ». Let

=ao(x)+al(x).V+ o talx)y
bo(x)+bi(x)y+ - +ayx)y

Wix, y) e AL[x, y]1],

and let

R(x, y)=yW(xy, y) %) (xy, ¥)/P(xy, ),
(here xy denotes (x,y, x, ..., X,, ¥)). Note that R(x,y) represents a
rational function of x, y.
From Lemma 6.3(i), it follows that R(x, y)e A[[x, y]]. Moreover, from
Lemma 6.3(ii), and by expanding W({(x, y) in a power series in x, y and
using the additivity of 2, it follows that

2(R(x, y))=W(x, ¢(x)) = f(x). QED.

6.3. LEMMA. Let A be an integral domain. Let x = (X,,.., X,,), and let y
be one variable. Let P(x,y)e A[x, y] and suppose that (¢P/dy)(0,0) is a
unit in A. Let ¢(x)e A[[x]] and suppose that P(x, ¢(x))=0 and ¢(0)=0.
Then we have:

(i) y(0P[Oy)xy, y)/P(xy,y)e A[[x, y]1],

(here xy denotes (x| ¥, X3 Yooy X,u V)-)-
(1) IfieN™ jeN, then

P o
D(y(xy) ¥’ 7, (X y)/P(xy, )} =x'p(x)’.
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Proof. We apply the method of [Fu, Proposition 27]. Write
Plx, y)=(r—o(x)) Q(x, yh

with Q(x, y)e A[[x]][y]. We have

orP aQ
T-Q—l—(‘— o(x ))E (1)
and
1 0P 1 10Q

(2)

Py y-ox) 0
From (1) and ¢(0)=0, it follows that Q(0, 0) is a unit, since (6P/dy}0, 0)
is a unit. Hence (1/Q)(0Q/dv)e A[[x, yv]]. Note that

v
y—olxy) 11—y 'o(xp)

eA[[x, »]1].
This proves (i). Next we have that
) o0 ,
D(y(xy) ¥y’ % (23, 1)/Q(xp, 1)) =0, (3)

because & is applied to a power series of the form y8(xy, y), with
fe A[[x, v]]. Moreover

y J+1
7 g LRI Z((xp) /(1 =y 'o(xy)) ')
y—olxy)
=2((xv)' Z ¥ e (xyv)™)
n=40
= 2((xy) p(xp)) = X'o(x).
The Lemma now follows from (2) and (3). Q.E.D.

Proof of 6.2(i1)). By Theorem 6.2(1), there exists a rational function
R(x,y)e A[[x, v]], such that f(x)=2(R(x,y)). As before, v is one
variable. Write

R(x,p)=>Y azx'v/,
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where i is a2 multi index. Define

Rl(xv Uy, Ul)

_u R(x,uy)—v, R(x,0,) Z a. x'ukiph
= = ij 1Yy
U —u, J=ki+h

RZ(x7 Uy, Uy, UZ)

=”2R1(Xs up, u)) — v, R(x, uy, Uz)z Z

[ S S
a;Xx uiusv,
Uy — Uy

j=ki+ka+10

Rm¥l(x5 Upyous Uy 25 Uy 15 Dmfl)

umflRm~2(x, Upsees Upy 25 umfl)—vm*lRm _2(x’ Utseeos Upp 2, Umfl)

Uy 17Uy

— fkygka oo gikm =t gydm—1
= z Ay X Uy Uy U0
J=ki+ ko m—y

We have
lezq Ixzuz Tt Ix,,,_[u,,,,; I.rmv,,,,;(Rm— 1 ) = @(R(x’ .V))
Since f(x)=2(R(x, y)), this proves Theorem 6.2(ii). Q.E.D.

6.3. Remark. If A is a Noetherian integral domain, then every power
series f(x)e A[[x]], x=(x{,.., X,,), which represents a rational function,
can be written as

flx)=P(x)/Q(x)  with P(x), Q(x)eA[x] and  Q(0)=1. (1)

This follows from the fact that A[[x]] is faithfully flat over the ring of
power series of the form (1), see [Ma, Sect. 24, p. 172]. However, this is
not generally true when A4 is not Noetherian.

6.4. Remark. The converse of Theorem 6.2(i) is also true. Let
x=(xy,., X,,) and let y be one variable. If f(x, y) is a power series which
represents a rational function, then 2( f) is algebraic. Indeed

1, f(xt, y)=2(f )x1),

and I,, of a rational power series (¢ one variable, y one variable) is
algebraic, see [Fu].

Remark. The converse of Theorem 6.2(ii) is not true. Indeed it is

641/26/1-5
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known [Fu, p. 273] that there exists 4 rational power series f(x, y, u) over
C in three variables such that 7/, 1, f is not algebraic. But

IX." Iluj‘(x’ Yz, u) = (Ixy[yuf )(XZ )

6.6. Remark. Christol [Chl] proves the case m=1 of Theorem 3.1 by
using the case m =1, A a field, (due to Furstenberg [Fu]) of Theorem 6.2.
In this remark we show how Theorem 3.1 follows by the same argument
from Theorem 6.2. Moreover we can simplify Christol’s argument by taking
for A4 the ring Z, instead of a field. Note, however, that the proof of
Theorem 6.2 is not elementary, while that of Theorem 3.1 given above is.

Proof of Theorem 3.1(i). Let feZ,[x,,..,x,]] be algebraic. Let
X ={X{ s Xy Xy 12 X2,n). FrOm Theorem 6.2 and Remark 6.3 it follows
that we can write

XmX2m

S =1(P/Q), where =1

X1X¥m+1 ngx,,, +2

and P(x), Q(x)eZ,[x], Q(0)=1. Let ¢: Z,[[x]]— Z,[[x]] be defined
by o3, a,x")=Y, a,x". For r=(r ., rs,), 0<r,<p, let ¥ (3, a,x")=
y X" Let se N be fixed.
Let V be the Z,/(p’) module of all F/Q”mod p°, where FeZ,[x] has
degree <d, where d will be chosen later. Note that Q” = ¢(Q) mod p, and
hence that Q7 = (¢(Q))” ' mod p*. Indeed if a=h mod p, then a”"zlb”"

mod p"*'. Note also that ,(ge(h))=1y,(g)h and that (¢(Q))
@(Q”" ). Hence

VAF/Q") =y (Flo(Q” ') mod p*
=y ,(F)/Q” "=y (F) 0/0"

Choose d>deg P+ p* deg Q. Then, since deg ¥, (F)< (1/p) deg F, we sec
that ¥V is closed under all the ¥, and that P/Q mod p® is an element of V.
Notice that V is finite. Let IV be the image of V under the diagonal map 1.
Clearly f mod p* is an element of IV and IV is closed under i, for all
V= (F|, I'y), since Iy, ,,= I Theorem 3.1(i) follows directly from this
and the finiteness of V. Q.ED.

Proof of Theorem 3.1(ii). Suppose that the Taylor coefficients of f(x)e
Z,[[x,,.., x,]] satisfy congruences of the form (1) of Theorem 3.1. By
Remark 2.2 there is an algebraic ge Z,[[x,,..., X,,,]] such that f'=g mod p.
Applying Theorem 3.1(i) to g it follows easily that (1/p)(f —g) satisfies a
set of congruences of the form (1) of Theorem 3.1 with p* replaced by p* .
Hence by induction there is an algebraic heZ,[[x]] such that
(1/p)(f —g)=hmod p*~'. Then f = g + ph mod p*. Q.ED.
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7. SOME PARTICULAR RECURSIONS

Let the a,eZ,, neN, satisfy a,=F(n)a,_, where F(n)= f(n)/g(n),
fn) =TT, (n+B)), g(n) =TT, (y;n+6,), where the a;, §;, 7, d,€Z
and (a;, p)=(y;, p)=1.

7.1. THEOREM. With the above notation let y(x)=Y a,x" and let se N.
Then there is an algebraic power series y(x)e Z,[[x]] such that y(x)= p(x)
mod p°.

Proof. Let 0<j<p. Iterating the above recursion formula p times we
have that

Ay ;=F(pk+j) F(pk+j—1) " F(pk+j—p+1)a,u_ 1y,

=( l'l'[ F(pk+r)) Apik— 1)+

r=j—p+1

1 ! o; pk + (a;r + B.))
—(iljl r:jlj[p+l 7Pk +(y;r +6,) ot =11+

Now for each i exactly one of the terms «,r + f; is divisible by p. Let it be
equal to B; p. Similarly for each i exactly one of the y,r + 4, is divisible by p.
Let it be equal to &; p. Cancelling the p’s we get

ap(k71}+j7 (1)

a :<ﬁ “ik'*‘B:{)_u0+“1(k)P+“2(k)P2+
vik +0;) vo+v,(k)p+uvy(k)pP+ -

i=1

where we have collected into the second factor all the factors not divisible
by p. Notice that u, and v, are £mod p and the u/ k), v{k)e Z[k]. Let
uky=ug+u,(k)p+ - and v(k)=vy+v,(k) p+ ---. Then for every value
of ke N, u(k) and v(k) are p-adic units. Note that for every ke N we have
k7 "7 =D+5 = ksmod p. Reducing u(k) and v(k) modulo p* and using the
above congruence we see that there are polynomials #(k) and o(k) of
degree <p’ '(p—1)+ s with coefficients from the set {0, 1,.., p°— 1} such
that for all ke N we have u(k)=u(k) and v(k)=0(k) modulo p°. Let
R\, =i(k)/o(k). Hence we have that if the @, ,, are determined by the
recursion formula @, ,=[17 (a;k+ )/ (v;k+9d]) Ri{k)d 4 ), and
the initial condition d,=a; modp°™““’**, where ord(a;) is the p-adic order
of a;, then 4, , ;=a,,, ; mod p* for all k. Iterating the above procedure we
get for every e and every j with 0 < j< p* that there exist f8,,,, 6,,€ Z and

rational functions R,(k) with numerators and denominators of degrees
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<p' (p—1)+s and coefficients from {0, 1,..,p*—1} such that if the
Qe 4 ; Satisfy the recursion formula

~ aik + ,Bie' ~
Apex 45 = (U m> RAK) Apep .1y 4 5 (2)
and initial condition
d,=a; mod p*4+* (3)

then G, ,;=a,.; modp* for all keN. Now let 4eN be such that
laily 184, Iy 16,/<A4 for all i Notice that |B]|=|(a;r+p)/pl<
(la;] (p— 1)+ [B,])/p since j—p+1<r<j and 0<j<p. Hence |f]| < 4.
Similarly |6/] < 4. Hence, by induction |f,,] < 4 and [6,,] < 4 for all i, e, j.
This shows that there are only finitely many different recursion formulas
(2). If e, j and ¢’, j' are such that the corresponding recursion formulas (2)
are actually the same, and if a;, a;, satisfy ord(a;) + s <ord(a;), then, since
all the a,e Z,, we must have that G, , ;=0 mod p* for all k. Now con-
sider the above procedure of determining recursion formulas (2) and initial
conditions (3). The first time a particular recursion formula F occurs, let its
initial condition be a,. We can note ord{a,)+ s = v say. If this recursion
formula F occurs again in the procedure we know that the corresponding
sequence of the d, , ; mod p*, k=0, 1, 2,..., is determined by the recursion
formula F and 4; mod p****. Hence we see that there are only a finite num-
ber of different sequences d, ,; mod p*. Hence for e large enough we will
have that for every j with 0<j<p® there is an ¢'<e and a j with
0<j <p®, such that a,y, ;=d,,,, modp’, for all k. From Theorem
3.1(ii) we now have immediately that there is an algebraic power series
Wx)=2 a,x"eZ,[[x]] with a,=a, mod p*, for all ne N. Q.E.D.

Remarks. (i) In the above proof we could have considered recursions
of the form a, = (f(n) h(n)/g(n) k(n)}a, ,, with the f(n), g(rn) as above
and the #(n), k(n)e Z[n] such that h(n), k(n) are units in Z, for all ne N.

(ii) If one allows f(n) to have a zero in Z,\ Q then y(x) need not be

algebraic. Indeed, for ae Z,\ Q, the power series (1 —x)*e F,[[x]] is not
algebraic, see [Ch2, Sect. 9 Example 1] or [M-V].

(ili) Christol and Dwork have informed us that Theorem 7.1 can also
be proved (at least for almost all p), by using the theory of differential
equations with strong Frobenius structure.
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